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In a retrospective report, Lednicki et al (2021) describe the detection of

Porcine deltacoronavirus (PDCoV) in three Haitian children. As part of

ongoing monitoring of the health of school children, plasma samples

from 369 children with acute undifferentiated febrile illness were

collected between May 2014 and December 2015. The samples were

tested for common pathogens that cause fever, including dengue,

chikungunya and Zika viruses and the parasite that causes malaria.

Samples that did not test positive for the common pathogens were

placed onto VeroE6 cells to determine if any viruses were present. Very

subtle cytopathic effect was observed in three of the samples. Through

additional molecular testing methods, and transmission electron

microscopy, it was determined that a coronavirus was present. 

Gene sequencing demonstrated that there were at least two separate

zoonotic events with non-recombinant strains of porcine

deltacoronavirus. Two children at one school were found to have a

coronavirus with 99.8% sequence similarity with a Chinese strain of

PDCoV, whereas one child at a second school was found to be infected

with a US strain of PDCoV.

All three children recovered uneventfully.

https://doi.org/10.1038/s41586-021-04111-z
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TRIAGE

This event was considered in scope for

the Community for Emerging and

Zoonotic Diseases (CEZD), and was

originally sent as a ping poll to the

community for feedback on December

1, 2021. The report was considered

somewhat relevant to very relevant by

community members.

GLOBAL DISTRIBUTION

PDCoV has a broad global distribution, having been identified in Hong Kong,

the United States (Wang et al, 2014), Mainland China (Dong et al, 2015), South

Korea (Lee et al, 2016), Thailand, Vietnam and Lao (Saeng-Chuto et al, 2017),

Canada (Ajayi et al, 2018), Tibet (Wang et al 2018), Japan (Suzuki et al, 2018),

Mexico (Perez-Rivera et al 2019), Peru (Vicente-Huaman 2021) and Haiti

(Lednicki, 2021).

Countries with published reports of detections

The COVID-19 pandemic raised global awareness of the zoonotic potential of

coronaviruses. Subject matter experts in virology and swine health were consulted

to share their perspectives on the disease presentation in swine, and the

occurrence of the virus in children in Haiti to gain a greater understanding of the

cross species transmission potential of PDCoV. This intelligence brief provides a

summary of available information about the cross-species transmission potential

of PDCoV.
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ALPHA BETA

DELTA

Porcine Epidemic Diarrhea virus (PEDv)

Transmissible gastroenteritis

virus (TGEV)

Swine acute diarrhea syndrome

coronavirus (SADS-CoV)

Canine enteric coronavirus (CCoV)

Feline infectious peritonitis virus (FIPV)

Common cold (HCoV-229E, HCoV-NL63)

Multiple Bat Coronaviruses

Severe acute respiratory syndrome

coronavirus (SARS-CoV)

COVID19 (SARS-CoV-2)

Middle East respiratory syndrome coronavirus

(MERS-CoV)

Murine hepatitis virus (MHV)

Bovine coronaviruses

Rat sialodacryoadenitis virus,

Porcine hemagglutinating encephalomyelitis

virus

Canine respiratory coronavirus

Equine coronavirus

Common Cold (HCoV-OC43)

Infectious bronchitis (IBV)

Turkey coronavirus (TCoV)

Beluga Whale CoV (BWCoV-SW1)

VIRAL TAXONOMY

GAMMA

Coronaviruses are enveloped, positive-sense, non-segmented, single-stranded RNA viruses, and

members of family Coronaviridae in order Nidovirales.

They are classified into four genera containing viruses pathogenic to mammals. 

Sparrow coronavirus (SpCoV HKU17)

Thrush coronavirus (ThCoV HKU12)

Porcine Deltacoronavirus (PDCoV) has

emerged fairly recently and is a

member of this group
Scan QR code to view

Coronavirus Taxonomic Tree
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Based on the genome sequences of 18 avian delta-coronaviruses and 100 PDCoVs,

Ye et al (2020) constructed phylogenetic trees that indicate PDCoV shares a

common ancestor with a sparrow-CoV, and that PDCoV likely emerged in Asia in

the 1990’s. Kong et al 2022, identify that the most likely ancestor is of avian origin,

and less likely from another mammalian host, though there have been very closely

related viruses found in Asian Leopard Cats and Chinese Ferret Badgers.

Figure credit: Kong et al 2022

Likely origin and routes of cross-species transmission of PDCoV. The red dashed
line indicates potential, but unknown, transmission of δ-CoVs from avian to
mammalian species; the blue dashed line indicates potential transmission of
PDCoV based on epidemiology or experimental studies.

Porcine aminopeptidase N (pAPN) has been identified as an entry receptor to which

the PDCoV spike protein attaches (Li et al 2018, Everest et al 2022). It is not

necessarily the only mechanism for cell attachment and entry, as experimental

studies with pAPN knock out porcine intestinal epithelial cells can still be infected

with PCoV (Zhu, 2018) albeit at a reduced rate (Li et al, 2018). Other porcine viruses

which use pAPN as a receptor include TGEV and PEDV. One human coronavirus

(HCoV-229E) has been identified that uses APN as its receptor (Bonavia et al, 2003)

Aminopeptidase (APN) is a metalloprotease enzyme that serves a variety of

physiological purposes; it is involved in pain sensation, regulation of blood pressure,

motility of sperm cells, cell adhesion, and cancer related physiological functions of

angiogenesis and metastasis (Chen et al, 2012). APN contains an interspecies

conserved domain (Li et al, 2018).

RECEPTOR USAGE

VIRAL ORIGIN
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SUSCEPTIBLE SPECIES  AND CLINICAL S IGNS

PDCoV has been shown varying degrees of ability to infect pigs, chickens,

turkeys, cattle and humans.

The findings in humans are limited to the detection of PDCoV in three

Haitian children with acute undifferentiated febrile illness (Lednicki, 2021).

Pigs of all ages can be affected by PDCoV, but neonates are most

susceptible. Clinical signs in neonatal piglets include diarrhea,

dehydration, vomiting, lethargy, anorexia and variable levels of mortality

(Duan, 2022). The entire intestine is affected; however, the primary sites of

infection are the jejunum and ileum. Signs of PDCoV are far less severe

than those of porcine epidemic diarrhea (PED) and transmissible

gastroenteritis (TGE). (Jung et al, 2015). The minimum infectious dose is

much lower in neonatal piglets than weaned piglets (Thomas et al, 2015).

Poultry can be experimentally infected with PDCoV (Boley et al, 2020). 14-

day old chickens experimentally infected with PDCov showed transient

diarrhea, with the majority of infected birds showing diarrhea within two

days of inoculation. The infection was also passed to cohabited uninfected

birds within 2 days. Pathology of the birds’ intestine was only visible during

the first week post infection and was normal 14 days post infection. Turkey

poults were somewhat more susceptible to PDCoV, and still exhibited

moderate diarrhea 14 days after infection. Gross pathology of all poult's

intestines demonstrated distended gastrointestinal tracts containing

yellow liquid and gas throughout the study period.

To determine susceptibility of calves, Jung et al (2017) experimentally

infected four, 3–7-day old gnotobiotic animals. None of the infected

animals showed clinical signs of disease, however all 4 shed PDCoV RNA

in the feces. At the same time, 4 additional calves were experimentally

challenged with PED virus, and no virus could be detected in the animals'

feces during the experiment. No histological lesions were found in any of

the animals' intestines.

https://doi.org/10.1038/s41586-021-04111-z
https://doi.org/10.3389/fvets.2021.811187
https://doi.org/10.3201/eid2104.141859
https://doi.org/10.1371/journal.pone.0139266
https://doi.org/10.3201/eid2602.190346
https://doi.org/10.3201/eid2104.141859
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Diagnostic testing for PDCoV is readily available at veterinary diagnostic

laboratories in Canada. Typical samples include feces, fecal swabs or oral fluids

that can be tested using molecular diagnostic techiques; blood is a less reliable

sample as viremia may not be prolonged (Neiderwerder et al, 2016).

The primary mode of transmission of PDCov is via the fecal-oral route (Goyal,

2015, Neiderwerder et al, 2016). Laboratory studies indicate the possibility of

aerosol transmission of PDCoV (Vitosh-Silman et al, 2016), however, it is thought

that the mechanism of infection is actually oral ingestion of the aerosolized virus,

rather than true aerosol spread. (Neiderwerder et al, 2016). McCluskey et al, 2015

sought to use a retrospective analysis to determine the source of introduction of

PDCoV to the US in 2014, however, were unable to define the likely routes of

introduction.

Greater information is available on the transmission mechanisms and

epidemiology of PED Virus due to it’s more severe effects, and PEDV controls

should serve as a template for control of PDCoV.

TRANSMISSION

DIAGNOSTICS

SURVIVAL IN THE ENVIRONMENT

PDCoV can survive for >21 days outside the host can be difficult inactivate

completely. Higher temperatures and lower humidity are more effective at

inactivating the virus. PDCoV survives for extended periods of time in feces, feed,

and feed ingredients; ranges include >3 to >7 weeks depending on the media

tested and environmental conditions. This prolonged survival can be reduced by

heat (Goyal, 2015). Given the long period of viability, exposure via the fecal-oral

route is possible over long time periods.

https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/tbed.12823
https://porkcheckoff.org/wp-content/uploads/2021/02/14-191-GOYAL-UofMN.pdf
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/tbed.12823
https://doi.org/10.1177/1040638716654200
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/tbed.12823
https://www.sciencedirect.com/science/article/pii/S0167587715300398?via%3Dihub
https://porkcheckoff.org/wp-content/uploads/2021/02/14-191-GOYAL-UofMN.pdf
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The range of species that can be infected with PDCoV is not clearly

known, given the conservation of the APN receptor across species, it is

possible that other species, beyond poultry, pigs, gnotobiotic calves and

humans, may be susceptible to infection with the virus.

Coronaviruses are known to recombine at a relatively high rate, in part

due to their very large RNA genomes (Lai et al, 1996). Multiple example of

CoV recombination are available in other species, including feline CoV’s

(Herrewegh et al, 1998), human CoV OC43 (Zhang, 2015), and avian delta

coronaviruses (Wang et al, 2022). The ability for beta coronaviruses (e.g.

SARS and MERS) to recombine has been modelled (Bannerjee et al, 2020).

PDCoV infection in pigs frequently occurs concurrently with other enteric

coronaviruses. The frequency of recombination of Porcine coronaviruses

is not clearly described, and so the likelihood of changes to the virus are

unknown.

Human infection with PDCoV cannot be quantified given the data

available. Other than the three cases in Haitian children, there have been

no reported detections of PDCoV in humans anywhere in the world,

despite a large number of people in close contact with pigs globally. The

Haitian cases at School A had 2 children with almost identical virus, but it

was not possible to tell if the infection occurred from human to human or

from a common source. It is important to note that given the large

amount of whole genome sequencing of Coronaviruses that has occurred

globally, due to the COVID-19 pandemic, it is unlikely that human

infection with PDCoV is a widespread occurrence.

https://doi.org/10.1006/smvy.1996.0046
https://doi.org/10.1128/JVI.72.5.4508-4514.1998
https://doi.org/10.1016/j.jinf.2014.12.005
https://doi.org/10.1111/tbed.14029
http://dx.doi.org/10.1099/jgv.0.001491
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